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SUMMARY

For hypersonic flow with a shock wave, there is a similar solution con-
sistent throughout the viscous and inviscid layers along a very slender three-
fourths-power body of revolution. The strong pressure interaction problem can
then be treated by the method of similarity. In the present study, numerical
calculations are performed in the viscous region with the edge pressure dis-
tribution known from the inviscid similar solutions. The compressible laminar
boundary-layer equations are transformed into a system of ordinary differential
equations. The resulting two-point boundary value problem is then solved by
the Runge-Kutta method with a modified Newton's method for the corresponding
boundary conditions. The effects of wall temperature, mass bleeding, and body
transverse curvature are investigated. The induced pressure, displacement
thickness, skin friction, and heat transfer due to the previously mentioned
parameters are estimated and analyzed.

INTRODUCTION

At hypersonic speeds, flow is decelerated by the work of compression and
viscous dissipation, therefore a high-temperature gas is produced in the bound-
ary layer. The density of the hot gas is very low, so the mass flux in this
boundary layer is small. Because of this high temperature, the thickness of
the boundary layer on the body surface increases and the streamlines in the
flow external to the boundary layer are displaced outward. The displacement
thickness may be comparable to or may even exceed the body thickness, so that
the effect of body transverse curvature is significant. The effective thick-
ening of the body can also induce a large pressure, which is transmitted into
the external inviscid field along the Mach lines. These pressures are then
transmitted essentially without change through the boundary layer and, in turn,
govern the growth of the boundary layer. Along with the pressure interaction,
the vorticity interaction may also occur because of the curved shock wave.
Thus, the boundary-layer structure will be governed not only by the pressure
gradient, but also by the vorticity at the edge of the boundary layer (ref. 1).

Another important fact is that high temperature can also cause the gas to
depart from the perfect-gas behavior. Thus the high-temperature gasdynamics
needs to be taken into account. The viscous-inviscid interaction and the
physical-chemical phenomena are more or less dependent on each other - a fact
that makes the theoretical investigation much more difficult. In the present
study, we assume that the perfect-gas relation holds and that the vorticity
interaction is negligible (i.e., only the pressure interaction is considered).

For hypersonic flow with a shock wave, a similar solution is found to be
consistent throughout the viscous and inviscid layers along a very slender



three-fourths-power body of revolution. The strong pressure interaction prob-
lem can then be treated by the method of similarity. In the present study,
numerical calculations are performed in the viscous region with the edge pres-
sure distribution known from the inviscid similar solutions. The compressible
laminar boundary-layer equations are transformed into a set of ordinary differ-
ential equations, and a two-point boundary value probiem results. The Runge-
Kutta method is then used with a modified Newton's method to solve the
resulting simultaneous nonlinear equations for the corresponding boundary
conditions.

Although the thermodynamic and fluid dynamic phenomena associated with
flight at hypersonic speeds have been the subject of intensive research for the
past decades, only a few studies of the effects of body transverse curvature
and mass bleeding have been carried out (refs. 2 to 7). The purpose of this
study is to contribute to the investigation of the effects of wall temperature,
mass bleeding, and body transverse curvature on the strong pressure interaction
region during hypersonic flights. The induced pressure, displacement thick-
ness, skin friction, and heat transfer are then analyzed based on these
parameters.

GOVERNING EQUATIONS AND BOUNDARY CONDITIONS

For axially symmetric flow with body forces neglected, the compress-
ible laminar boundary-layer equations can be written as follows:

Continuity:
) )
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Momentum:
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Energy:
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where

with &w << 1. The coordinate system is shown in figure 1. For these

equations, U and V are the velocity components in the X and Y direc-
tions, respectively, H 1is the total enthalpy, and the Prandtl number

Pr = Cpp/k, where Cp is the specific heat at constant pressure, p is the
coefficient of molecular viscosity, and k 1is the coefficient of thermal con-
ductivity. The variables P, p, and T are the pressure, density, and temper-
ature, respectively, governed by the perfect-gas law



P=p§T
where R s the gas constant.

The boundary conditions for the flow problem considered here are

UCX,0) = 0
V(X,0) = Vy(X)
H(X,0) = Hy(X)

1im UCX,Y) = Ug(X)

Yo

1im H(X,Y) = Hg(X)

Y+

TRANSFORMATION

By extending the Mangler-Levy-Lees transformation, we can transform the
coordinate axes (X,Y) into (£,n) by

X Y
2 Ue
£ = pwperrw dX and n=— pr dY
0 28 Jg
from which we derive
rU
de 2 an _ P
=p p Ur and = ——
dx wwew 3Y JIE
Further, when the dependent variables F and G are defined by
F U H
a—=— and G =7
an Ue He

the laminar boundary-layer equations become (ref. 2)
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In order to have similar solutions the following similarity criteria are
required for an isoenergetic flow outside the boundary layer where Hg is
constant (ref. 8):

(1) NR = constant or NR is a function of F and G.

(2) Pr

2
1 or Ue/He = constant when either Pr = constant or Pr is a

function of F and G.

d InU_/p )
—___e{e 2 _
dnE (p - Fn = constant or 2

d In Ue

e
(-3 - FZ) is a function
P n
of F and G.
(4) F(0) = constant.

(5) G(O) = constant or Gn(O) = 0.

There are only three physical situations in which we expect the similarity
to hold (ref. 1): (1) The constant-pressure solutions can be obtained if the
pressure and the streamwise velocity at the edge of the boundary layer are con-
stant along the boundary. (2) The stagnation-point solutions are obtained by
assuming a stagnation point for the inviscid flow and the boundary layer lying
on the body within the stagnation region. (3) The third situation is the
hypersonic solution which is studied in the present work. In order to satisfy
the above similarity criteria for the hypersonic case, we make the following
assumptions:

(1) For hypersonic flow, Unge = 2.

@ T, s constant and U, = U_ - 0(1M2) - U,

(3) Pr = 0.72 and Y = 1.4.
(4) u is a power function of T: u/po

(5) P« Xn and Ty x™ where 2m + n
)V, « X,

(T/T)® where w = 0.75
1.



It is noted that for a three-fourths-power body of revolution m = %, so we
have n = -%. This condition is consistent with the inviscid hypersonic simi-
larity criterion. The pressure distribution P « X-% has been confirmed by
the experimental work for a flat plate (refs. 9 and 10).

The similarity boundary-layer differential equations are then in the form
(ref. 2)
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where

R=1+A f;(c - Fi)dﬁ

with the transverse curvature effect parameter A given by

_ 4 COS a p U
A= Y-1 L ve. constant (9)
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and the mass bleeding effect parameter F given by

-V X
F e — (10)
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The constants « and B satisfy the relations P = aX~% and ry = pX%,
respectively.

COMPUTATIONAL METHOD

To solve equations (7) and (8), we define a set of new dependent variables

Yy = F
Yo = F!
Y3 = F"
Yq =G
Yg = G'



Equations (7) and (8) are reduced to a system of first-order ordinary differ-
ential equations:

Y, =Y, an
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, [q»] . (NR)nY3}
3= - - (13)
Y, =Yg (14)

\ (NR) 1 2
Y5 = - —“—Pr Y5 + Y]Y5 +2l1 - Pr (NR)Y3 - <I>]Y2

)

where
Y -1 2
o = )Yy + Gty - ¥3)
Y, - Yo\
NR = Y4(0) 1+ A¢2)
n
2
5, = Io (Y4 - YZ) dn
and
2 -1 2 w-2
Y, - Y Y, - Y Yo - 2Y,Y
(e =" 2 4~ " 5 23<1+Ad>>
NRY, = <Y4(0)> Ay -%3) s @- Y, 7,0 2
The corresponding boundary conditions become
Y1 =F, (mass bleeding)
Yo =0 at n=20
Y4 = G (constant wall temperature)
Yo = 1 as n * @
Yq = 1

Obviously, it is a two-point boundary value problem.

This two-point boundary value problem can be solved by using the follow-
ing algorithm:

(1) Set i =1 and guess Y3(0) and Yg(0).



(2) Use the Runge-Kutta method to integrate the system of equations (11)
to (15).

(3) Check the terminal conditions:

i i
i i
e4 = Y4(®) - ]

If |e;| < e, and |el| < g4, the solutions are obtained. Otherwise, use

the modified Newton's method to correct the initial guesses:
i+l i

3O GO ()
41 ac ),

f
Y5 ) YS(O)

where
e2 : 3(0)
e = { = 0 ¢cac<l

€, Y5(O)

(4) Set 1 = i+1, then go to step (2).

SOLUTIONS IN STRONG PRESSURE INTERACTION REGION

The outer edge pressure P/P, and the displacement thickness &*/X can
be expressed as an asymptotic series of the form

- -2
P . P]Mwa.w ) P2 + P3(Mmaw)
P = ToX % -
© X X
Y, S.Ma 5, + 8,(Ma)?
s . § X T+ 1 =W + 2 3 =W
X ~ 0OM ~% - e
® X X

where §&p's and Pp's are the constants to be determined, x s the pressure
interaction parameter defined by

M2+w

@

and &y s the surface inclination angle (fig. 1). MWith the similar hyper-
sonic inviscid solution (ref. 1),



o~ 2
P (%, ds
p_ = MadX *dX

we can, in principle, obtain all the terms Pp's and §&p's after considerable
mathematical manipulations. For simplicity we only consider the zeroth-order

solutions: that is, we assume that the interaction parameter ¥ 1is very large.
We then have the following expressions for Pg and &g (ref. 11):

2
.
Py = %3 m 58(1 " g¥) (16)
SS - V) L] _ an
3Vl 1 + —¥
§

and the corresponding zeroth-order solutions for a three-fourths-power body of
revolution are

Y
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The value of N 1s 1.296 as determined by Yasuhara (ref. 12). The Reynolds
number Re, skin friction coefficient Cg, and the Nusselt number Nu are all
based on free-stream values and are given by

2 au
Cew = -—GE ( 8Y> (22)
p U X
Rey o, = — (23)
N



Num = StmRe Pr (24)
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with the Stanton number St given as

Mo = S0, - h) (25
and h, given as the adiabatic wall enthalpy or recovery enthalpy.
Equations (22) and (25) can be reexpressed as the following forms:
2p, He)w [ ]m "
Ce. = — |+ G(O)| F (O) (26)
fo Pwui he
e 6 (o) Q@7

Ctw 2PrF"(O)[hrlHe i, G(O)]

For convenience equations (26) and (27), instead of equations (20) and (21),
will be used in our analysis and comparison.

,

RESULTS AND DISCUSSION

The displacement thickness 8" for the axisymmetric boundary layer is
defined by

*

§ §
Jo (pUg)2mr dY = f0<peue - oW)2mr dY

For a hypersonic flow over a slender body of revolution, we can obtain

%*

LI P (28)

r
w

where the integral factor «x 1is defined as
) .2
k= | (G-F )dn
\[0 o

If the effect of the transverse curvature is neglected, we then have



X %

= %Ax (29)

‘1|07

M

x

where s; denotes the displacement thickness calculated in Mangler's trans-

formation and «y 1is the value of « for A = 0. Although figure 2 shows
that « decreases as A decreases, the value of § /ry calculated from
equation (29) is always larger than that calculated from equation (28). This
implies that the Mangler's solution overpredicts the real value of the dis-
placement thickness; that is, the transverse curvature acts to decrease the
displacement thickness compared with Mangler's solution. This fact is also
found in reference 2. Figure 3 shows that the value of & /ry increases as
A increases; so A can be considered as a parameter for the effect of body
transverse curvature. If A is not very small compared with unity the effect
of transverse curvature needs to be taken into account. Fiqure 2 also shows
that high wall temperatures yield larger «'s.

, Contrary to the effect of A, increasing Fy will decrease the values of
§ /Iry and « (figs. 4 and 5). Figures 3 and 5 also indicate that a hot wall
produces a larger displacement thickness because of the higher viscosity near
the wall. The effects of A and Fy are smaller for cold walls.

The velocity (F') profiles and the effects of A and Fy, on F"(0) are
given in figures 6 to 7. The value of F"(0), which characterizes wall skin
friction, increases with F, and A. However, unlike the effect of F, on
F', F' approaches unity more slowly when A is large than when A is small.
Generally, a higher wall temperature yields a larger F"(0) for any given A.
However, F"(0) is not sensitive to the wall temperature variations for a given
Fw. Only at very small Fy,, hot walls can result in slightly higher F"(0)
than are obtained for cold walls.

The value of G'(0) characterizes the rate of heat transfer at the walls.
For A =0 and Fy, = 0, figures 8 and 9 show that the adiabatic total wall
enthalpy ratio Gyr 1is equal to 0.84 which is approximately equal to Pr in
the present study. It is noted that Gyr increases with Fy and decreases
with A. This implies that the enthalpy recovery factor ¥ defined by

@D N

(30

e

n

o

+

R
Nl [

is affected not only by the Prandtl number but also by the streamwise pressure
gradient dPg/dX. The wall-temperature gradient G'(0) has positive and nega-
tive values for Gy < Gyr and Gy > Gyp, respectively. The absolute value of
G'(0) increases with A and Fy.

The total enthalpy profiles for various values of A and F, for cold
and hot walls are similar to the velocity profiles. However, the value of G
monotonically increases or decreases to approach unity at the edge boundary
for cold walls or hot walls, respectively. For Gy = 1.0, which is close to

10



the value for the insulated wall, the total enthalpy profile shows some inter-
esting properties. In figure 10, it is seen that the value of G decreases
first to reach a minimum and then increases to a maximum exceeding unity,

and then decreases to unity with increasing n. It indicates that the total
enthalpy of the boundary-layer flow can exceed that in the outer inviscid

flow for some ranges. The minimum and maximum values of G 1in the profile
are larger and occur at lower heights for larger values of Fy. Conversely,
the minimum and maximum values in the G profile are smaller and occur at
higher heights when A is larger (fig. 11). This result agrees with the
calculations in reference 2.

It is shown in figures 12 to 15 that wall cooling (low Gy) and mass
bleeding (high Fy) tend to thin down the boundary-layer thickness and then
decrease the strong interaction effects. The effect of F, on P/P, is
smaller for cold walls. It is interesting that the transverse curvature effect
has only a weak effect on the boundary-layer thickness Mg6*/X and the induced
pressure P/Py. Since the Mangler's solution overpredicts the value of &§*/ry,
we can conclude from equation (18) that My 8*/X and P/P, are underpredicted
by the Mangler's solutions. It is noted that, for a hypersonic viscous flow
over a flat plate, Li (refs. 7 and 13) also demonstrated that the induced pres-
sure P/Py, and displacement thickness Mx8*/X increase with increasing wall
temperature.

Both the skin friction coefficient Cfeo and the Stanton number St, are
shown (figs. 16 to 19) to increase with A, Fy, and Gy. These results are
also shown in references 7 and 13 for a flat plate calculation. In the present
study, calculations show that Cfeo and St, are insensitive to the variation
of A and Fy, for very cold walls. However, the results in reference 7 con-
clude that Cfeo and Ste are insensitive to the variation of Fy, for the hot
wall. This discrepancy may be due to the assumptions, Pr = 1, y« T, and
he/Hg = 1, that were made in the calculations in reference 7. Experimental
works are required for the confirmation of these theoretical studies.

CONCLUSION

The similar solution for a slender three-fourths-power body of revolution
at hypersonic flight has been studied. Attention was paid to the effects of
the wall temperature, mass bleeding, and transverse curvature in the strong
pressure interaction region of the boundary layer. The compressible boundary-
layer equations were transformed to a system of ordinary equations and then
the Runge-Kutta technique with the modified Newton's method was applied to
solve the resulting two-point boundary value problem.

Three parameters, Gy, A, and Fy, were defined to characterize the effects
of wall temperature, transverse curvature, and mass bleeding, respectively.
Analysis has shown that the Mangler's solution overpredicts the real value of
displacement thickness §&*/ry and then underpredicts the induced pressure
P/Ps. The displacement thickness &*/ry increases with increasing Gy and A,
but decreases with increasing Fy. The velocity gradient F", which charac-
terizes the skin friction, was found to increase with Gy, A, and Fy,. Solu-
tions also showed that although F"(0) is larger for larger A, the velocity
ratio F' approaches unity more siowly when A is large than when it is
small. Because of the pressure gradient, the insulated total wall enthalpy

11



ratio Gyr changes not only with Pr but also changes with A and F,. The
parameter Gyy increases with Fy and decreases slightly with A. The abso-
lute value of the wall-temperature gradient G'(0) increases as the deviation
of G, from Gyr increases: G'(0) is positive when Gy < Gyy and negative
when Gy > Gyr. The G distribution for Gy = 1 shows that G decreases
first to a minimum, then increases to a maximum exceeding unity, and then
decreases to unity with increasing n. This means that the total enthalpy of
the boundary-layer flow can exceed that in the outer inviscid flow for some
ranges. The two extreme values in the G profile are larger and occur at
lower heights for larger Fy. However, the influence of A produces the oppo-
site effect in the G profile.

The similar solutions in the strong interaction region show that the mass
bleeding parameter F, can produce a significant increment in the induced
pressure P/P, and in the parameter Me8*/X; however, the transverse curvature
parameter A has a weak effect on them. The skin friction coefficient Cr,
the heat transfer parameter G'(0)/[h./Hg - G(0)], and the Stanton number St
all increase with increasing Gy, A, and Fy. Generally, a cold wall makes
the flow insensitive to the variation of A and F,.

Experimental data for the problem considered in the present study were
not available to compare with our results. However, extensive experimental
studies are definitely required to verify both qualitative and quantitative
aspects of the theoretical predictions of the boundary-layer behavior.

12
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APPENDIX
SYMBOLS
transverse curvature parameter
skin friction coefficient
specific heat at constant pressure
mass bleeding parameter
velocity ratio
total enthalpy ratio
total wall enthalpy ratio
adiabatic total wall enthalpy ratio
wall-temperature gradient
total enthalpy
enthalpy
recovery enthalpy (adiabatic wall enthalpy)
enthalpy at wall
coefficient of thermal conductivity
Mach number
ratio of the product of density and viscosity, pu/pyhy
Nusselt number
pressure
Prandt] number
square of radius ratio
Reynold's number
gas constant
radius from the central axis
wall radius
enthalpy recovery factor

Stanton number

13



T temperature

u velocity component in X-direction

v velocity component in Y-direction

X,Y coordinate axes for the three-fourths-power body of revolution

o, B constants

oy surface inclination angle

Y specific heat ratio

&* displacement thickness

M displacement thickness for Mangler's transformation
€ termination criterion

n transformed boundary layer

K integral factor

KM value of « for A =20

n coefficient of molecular viscosity

£ transformed surface coordinate

I constant

P density

X pressure interaction parameter

w constant

Subscripts:

e edge condition

M calculated by Mangler's transformation

m,n constants

r recovery (adiabatic wall) condition
W wall condition
wr wall value in adiabatic condition

XY coordinate axes for the three-fourths-power body of revolution

14



n derivative with respect to n
£ derivative with respect to §
Superscripts:
w constant
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TRANSFORMED BOUNDARY LAYER., N

0

_ TRANSVERSE
12— CURVATURE
PARAMETER.
A
| MASS 10— 10
BLEEDING
PARAMETER.,
FW
= 8
L o
5
<
)
0 z
2
Fw=10 g N 5
w a
o
=
— Fu=5 S
z
Fw= 10 =
u —
0
—
2 -
10
0 I
.90 1.00 1.10 ) 1.00 1.10
TOTAL ENTHALPY RATIO. G TOTAL ENTHALPY RATIO, G
FIGURE 10. - CORRELATION OF TRANSFORMED BOUNDARY LAYER, FIGURE 17, - CORRELATION OF TRANSFORMED BOUNDARY LAYER.
TOTAL ENTHALPY RATIO ( G = H/Hg). AND MASS BLEEDING TOTAL ENTHALPY RATIO (G = H/Hg), AND TRANSVERSE CURVA-
PARAMETER FOR A TOTAL WALL ENTHALPY RATIO OF 1.0 AND TURE PARAMETER FOR A TOTAL WALL ENTHALPY RATIO OF 1.0
A TRANSVERSE CURVATURE PARAMETER OF 0.0. AND A MASS BLEEDING PARAMETER OF 0.0.
TOTAL
ENTHALPY
1.25— RATIO.
_M
O— 3.
1.00—
|I’>_<\
8
&
e /5
o -0
3 1.0
i
g .50}—
8 0
=2 .5
=
25—
-O
A
. | | | |
2 ] 6 8 10

TRANSVERSE CURVATURE PARAMETER. A
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A MASS BLEEDING FACTOR OF 0.0.

19



INDUCED PRESSURE. (P/Pog)X |

* yx-1/2

BOUNDARY-LAYER THICKNESS.
Mo (8 70X

20

1.0

TOTAL
ENTHALPY
RATIO.
6(0)

2.0

l | | | J

MASS BLEEDING PARAMETER, F(0Q)

FIGURE 13. - CORRELATION OF INDUCED PRESSURE. MASS BLEED-
ING PARAMETER, AND TOTAL WALL ENTHALPY RATIO FOR A TRANS-
VERSE CURVATURE PARAMETER OF 2.0.

T4

‘I.2C TOTAL
ENTHALPY
RATIO.

1.04 G(O)
.8
q
.6
K J\f
4 | | | |
0 2 4 3 8 10

MASS BLEEDING PARAMETER, F(0)

FIGURE 15. - CORRELATION OF BOUNDARY-LAYER THICKNESS.
MASS BLEEDING PARAMETER. AND TOTAL WALL ENTHALPY
RATIO FOR A TRANSVERSE CURVATURE PARAMETER OF 2.0.

1.25

1.00

~
v

pval
(=]

BOUNDARY-LAYER THICKNESS, Moo (8 /X)x™ 172

N
i

G

SKIN FRICTION COEFFICIENT,

TOTAL
ENTHALPY
RATIO,
6(0) e
o= O—
2.0
O - W)
O
1.0
c\%
— —O
.5
c)\
— O
N
2 L] 6 8 10

TRANSVERSE CURVATURE PARAMETER, A

FIGURE 14. - CORRELATION OF BOUNDARY-LAYER THICKNESS.
TRANSVERSE CURVATURE PARAMETER, AND TOTAL WALL ENTHALPY
RATIO FOR A MASS BLEEDING PARAMETER OF 0.0,

TOTAL
ENTHALPY
RATIO.
G(0)

2.0

TRANSVERSE CURVATURE FACTOR, A

FIGURE 16. - CORRELATION OF SKIN FRICTION COEFFICIENT,
TRANSVERSE CURVATURE PARAMETER, AND TOTAL WALL ENTHALPY
RATIO FOR A MASS BLEEDING PARAMETER OF 0.0.



SKIN FRICTION COEFFICIENT.

)(J

(5

20

—_
o

- ENTHALPY

TOTAL

RATIO,
6(0)

2.0

STANTON AND PRANDTL
NUMBER FACTOR,
25t Pr

TOTAL
ENTHALPY
RATIO,
6¢0)

2.0

MASS BLEEDING PARAMETER. F

FIGURE 17. - CORRELATION OF SKIN FRICTION COEFFICIENT,
MASS BLEEDING PARAMETER. AND TOTAL WALL ENTHALPY
RATIO FOR A TRANSVERSE CURVATURE PARAMETER OF 2.0.

STANTON AND PRANDTL NUMBER

TOTAL
ENTHALPY
RATIO.
6(0)

2.0

)

}—

2 ] 6 8 10
MASS BLEEDING PARAMETER. F

FIGURE 19. - CORRELATION OF STANTON AND PRANDTL NUMBER
FACTOR, MASS BLEEDING PARAMETER. AND TOTAL WALL
ENTHALPY RATIO FOR A TRANSVERSE CURVATURE PARAMETER
OF 2.0.

6 8 10

TRANSVERSE CURVATURE PARAMETER. A
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